The background of the slide features a light gray grid. Overlaid on the grid are numerous semi-transparent, colored circles in shades of orange, red, purple, blue, green, and yellow, creating a sense of depth and motion.

Julia Freund

Institut für Theoretische Physik (Universität Innsbruck)

Principles and Applications of Quantum Information

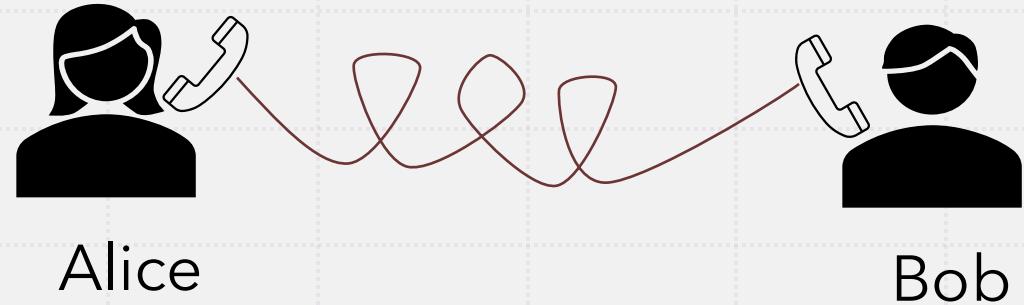
Motivation

Traveling
Sales-person
Problem

Can a quantum computer solve NP-hard problems faster than a classical computer?

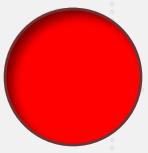
Factoring
Problem
(RSA)

Secure communication
Key exchange

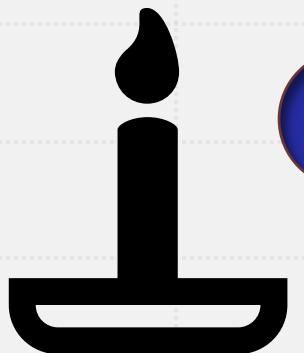
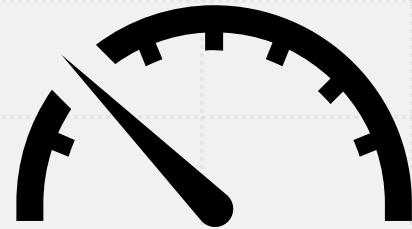


How can we use quantum particles to exchange a key between Alice & Bob?

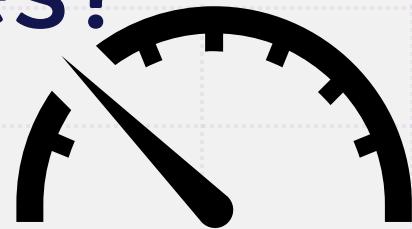
Classical Light Source



What makes quantum
particles different from
classical particles?

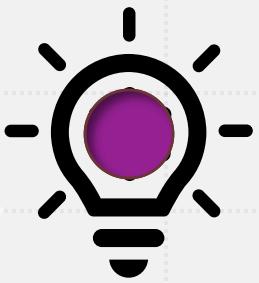


red
100%

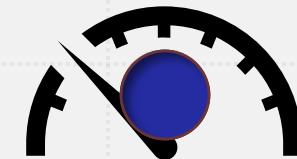


blue
100%

Quantum Light Source

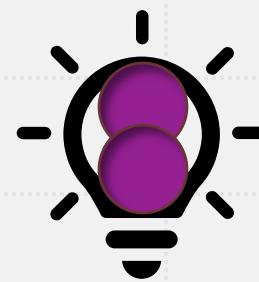


Superposition



red
50%

blue
50%

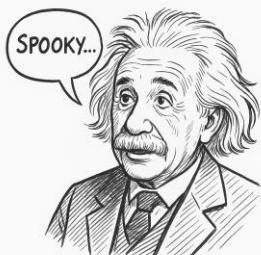


Entanglement

red
50%

blue
50%

red
100%



Definition of a quantum bit

$$|0\rangle = \text{red circle} = \text{"0" bit}$$

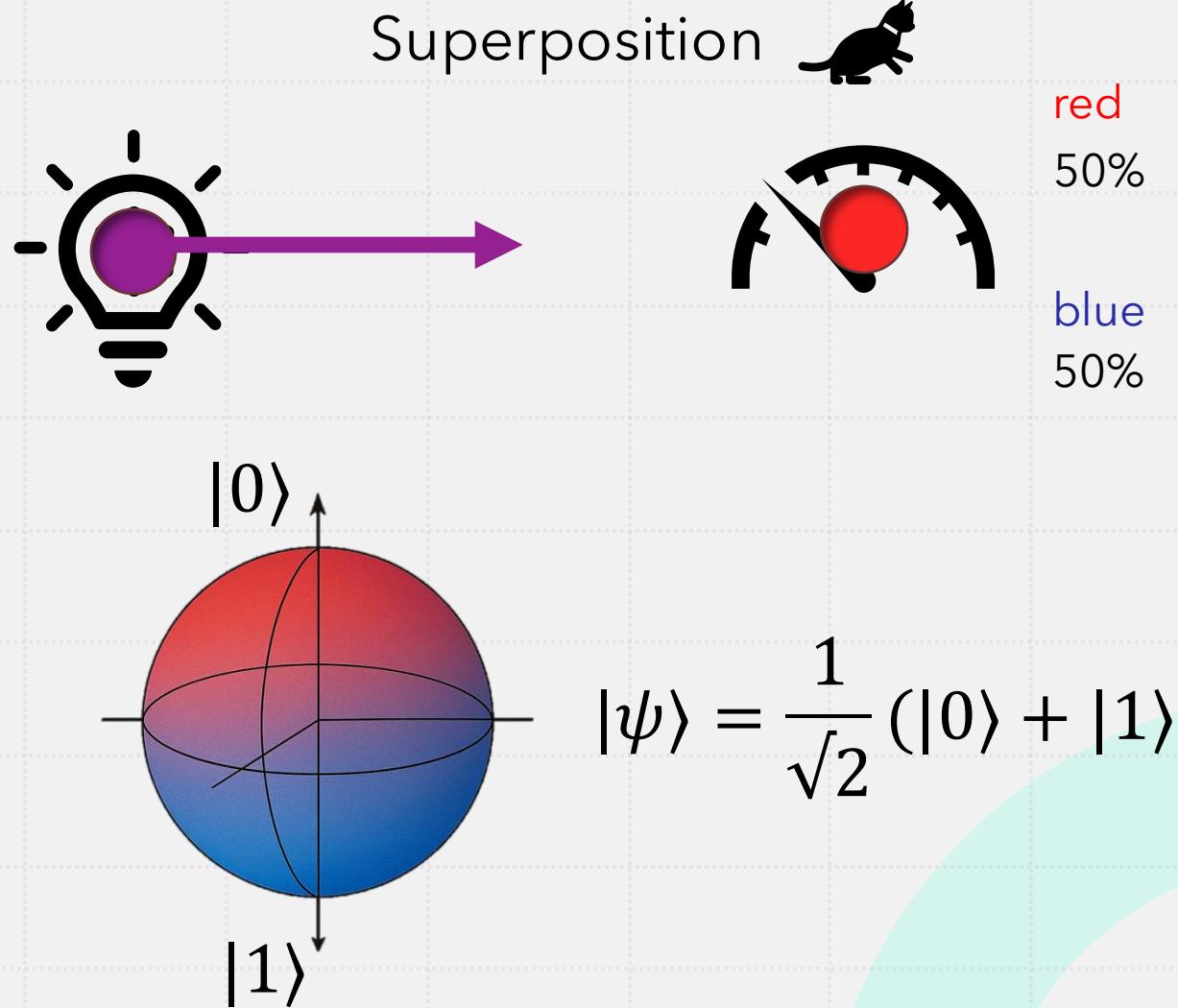
$$|1\rangle = \text{blue circle} = \text{"1" bit}$$

Quantum bit - qubit:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

α ~ probability that we find 0 (red)

β ~ probability that we find 1 (blue)



Deutsch-Josza Algorithm (1)

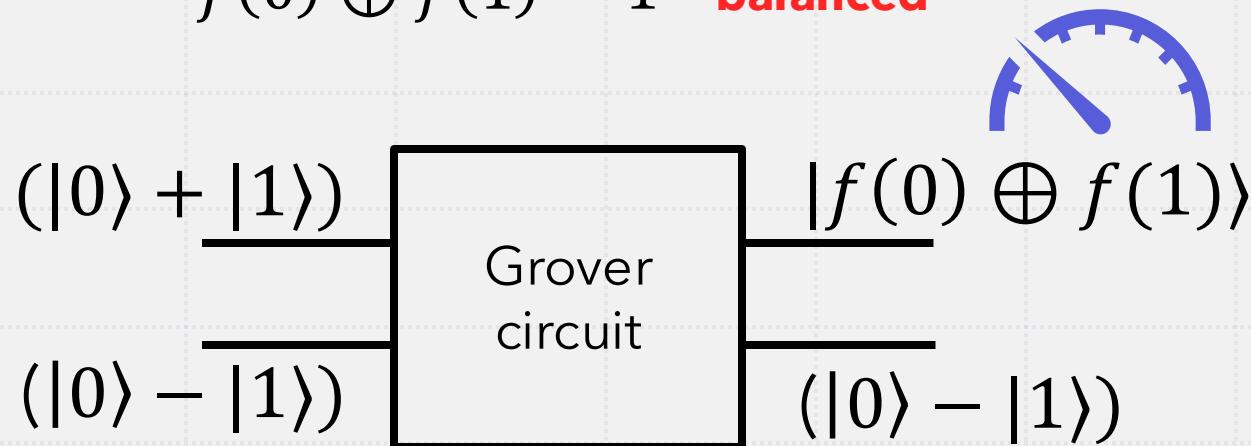
Task: determine if function f is **constant** or **balanced**

Boolean function: $f: \{0,1\} \rightarrow \{0,1\}$

Quantum strategy:

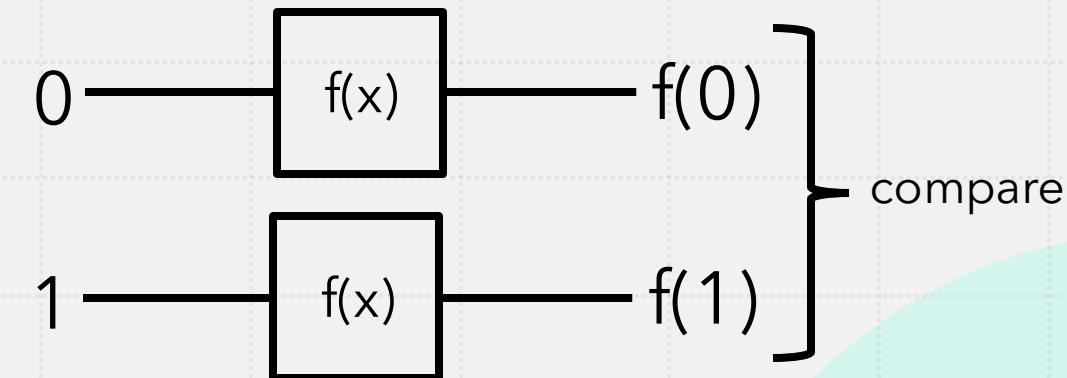
$$f(0) \oplus f(1) = 0 \quad \text{constant}$$

$$f(0) \oplus f(1) = 1 \quad \text{balanced}$$



1 step

Classical strategy:



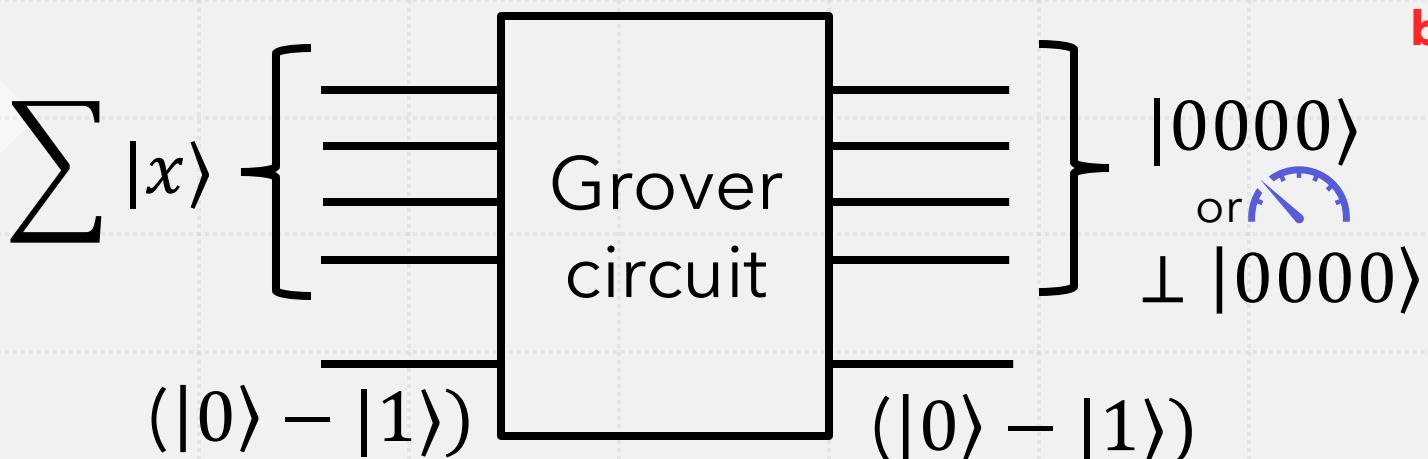
2 steps

Deutsch-Josza Algorithm (2)

Generalization to m bit function: $f: \{0,1\}^m \mapsto \{0,1\}$

Promise: $f(x) = \text{const. } \forall x \in \{0,1\}^m$ **constant**

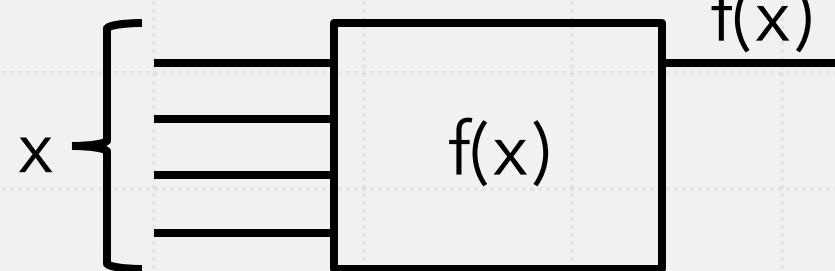
Quantum strategy:



$$f(x) = \begin{cases} 0, & \forall x \in M_0 \\ 1, & \forall x \in M_1 \end{cases}$$

balanced

Classical strategy:



$|0000\rangle$

constant

Something else, e.g.:

$|0010\rangle$

balanced

1 step

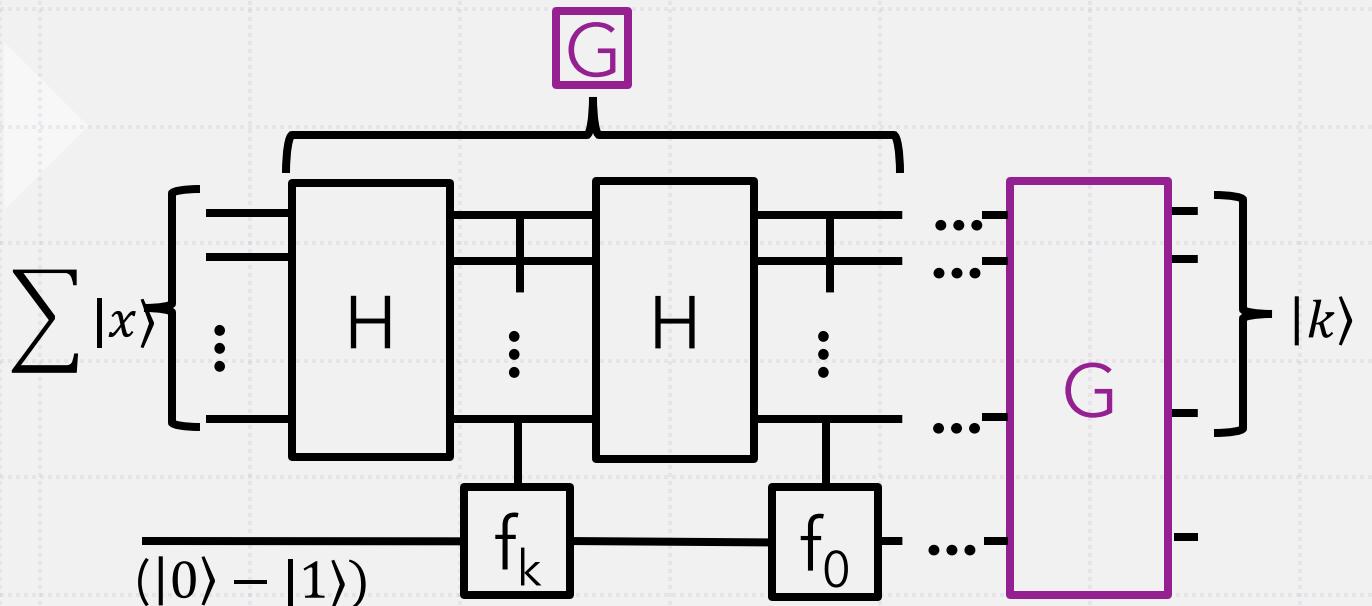
$2^{m-1} + 1$
steps/repetitions

(in the worst case to be
100% sure about it)

Other Algorithms

Grover's Algorithm: $f: \{0,1\}^m \mapsto \{0,1\}$

$$f(x) = \begin{cases} 1, & x = k \\ 0, & x \neq k \end{cases} \quad N = 2^m \quad \text{Numbers/ Bit patterns}$$



Classically: $\mathcal{O}(N)$

Quantum: $\mathcal{O}(\sqrt{N})$ times we apply \boxed{G}
with probability $p = 1 - 1/\sqrt{N}$

Shor's Algorithm:

Prime number factorization

$$N = p \cdot q \quad N \text{ is a } m \text{ bit number}$$

Task: find p and q

Classical: $\mathcal{O}(\sqrt{N})$

Exponential in N

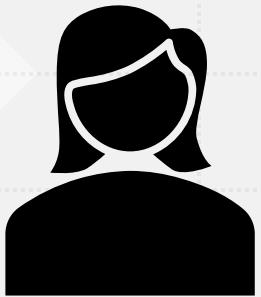
Quantum:

$$\mathcal{O}((\log N)^2) \rightarrow \mathcal{O}(m^2)$$

Exponential in number of bits m

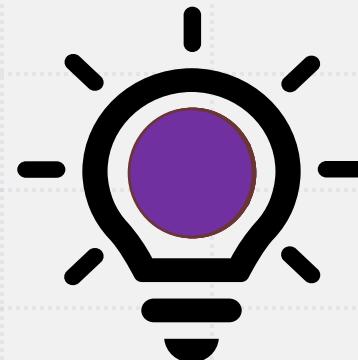
Quantum Key Distribution

= 101011101001 (random sequence of 0, 1)

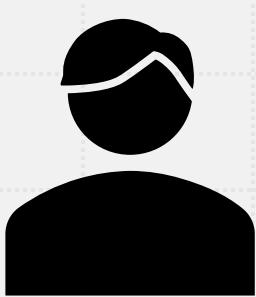


Alice

= 101011...



Repeat that many times



Bob

= 101011...

Eavesdropper detection

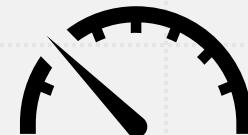
Teleportation

Alice has a qubit in the state: $|\Psi\rangle$

Alice and Bob share an **entangled state**



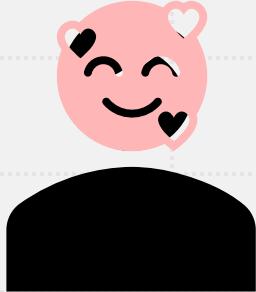
Alice



Bell measurement

Gets outcome i out of four

Task: get Bob the state



Bob

Thank for your
attention ☺

$U_i |\Psi\rangle$

Alice tells Bob i

$U_i^\dagger U_i |\Psi\rangle = |\Psi\rangle$

Bob applies the inverse to his qubit